Create beautiful visualizations using our in-app Plotly support. Plotly support works just as you're used to in Python, displaying your chart straight to the spreadsheet.
Getting started
Building charts in Quadratic is centered around Python charting libraries, starting with Plotly. Building charts in Plotly is broken down into 3 simple steps:
# import plotlyimport plotly.express as px# replace this df with your datadf = px.data.gapminder().query("country=='Canada'")# create your chart type, for more chart types: https://plotly.com/python/fig = px.line(df, x="year", y="lifeExp", title='Life expectancy in Canada')# make chart prettierfig.update_layout( plot_bgcolor="White",)# display chart fig.show()
Bar charts
import plotly.express as px# replace this df with your datadf = px.data.gapminder().query("country == 'Canada'")# create your chart type, for more chart types: https://plotly.com/python/fig = px.bar(df, x='year', y='pop')# make chart prettierfig.update_layout( plot_bgcolor="White",)# display chartfig.show()
Histograms
# Import Plotlyimport plotly.express as px# Create figure - replace df with your datafig = px.histogram(df, x ='output')# Display to sheet fig.show()
Scatter plots
import plotly.express as px# replace df, x, and y and color with your datafig = px.scatter(df, x="col1", y="col2", color="col3")fig.update_traces(marker_size=10)fig.update_layout(scattermode="group")fig.show()